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The concept of doubly-colored graphs is proposed to model subductions of coset
representations, double cosets, and unit subduced cycle indices, which have been math-
ematically formulated in coset algebraic theory developed by Fujita (Symmetry and
Combinatorial Enumeration in Chemistry, Springer-Verlag, Berlin, 1991).
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1. Introduction

The USCI (unit-subduced-cycle-index) approach developed by Fujita [1] is
based on the subduction of coset representations (CRs) [1,2]. Although this
approach is versatile in combinatorial enumeration, the concept of “subduction
of CRs” is not so easy to understand, because it has been originally given by
purely mathematical and abstract formulation [2].

To show how mathematically it is formulated, the subduction of a coset rep-
resentation is introduced briefly. A group G is expressed as a set of elements:

G =
{
g1, g2, . . . , g|G|

}
, (1)

where |G| is the order of G and g1 = I (the identity element). The set of ele-
ments generates a sequence of subgroups (SSG), which are usually ordered in a
non-descending way of their orders:

SSG = {G1, G2, . . . , Gs}, (2)
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where each subgroup is a representative of relevant conjugate subgroups within
G and we place G1 = C1 = {I } and Gs = G. Each subgroup Gi (1 � i � s)
selected as a representative of conjugate subgroups may be used to express G as
a (right) coset so as to give a coset decomposition expressed by

G = Gig1 + Gig2 + · · · + Gigr . (3)

As a result, we obtain a set of cosets defined by

G/Gi = {Gig1, Gig2, . . . , Gigr}, (4)

where r represents the number of cosets in the coset decomposition (equation
(3)). By multiplying each coset by g (∈ G), equation (4) generates a permutation
πg as follows:

πg =
(

Gig1 Gig2 · · · Gigr

Gig1g Gig2g · · · Gigrg

)
. (5)

When g runs over G, we obtain a set of permutations G(/Gi) given by

G(/Gi) = {πg | ∀g ∈ G}. (6)

The set of permutations (equation (6)) is called coset representation, the sym-
bol of which has been coined as G(/Gi) in order to emphasize the distinction
between the global (G) and the local symmetry (Gi) [3]. When we select πg for
g (∈ Gj ), we obtain a restricted set represented by

G(/Gi) ↓ Gj = {πg | ∀g ∈ Gj } (7)

which is called subduction of the coset representation. During this process, the
transitivity of G(/Gi) (equation (6)) is influenced so as to generate one or more
orbits, which are in turn controlled by coset representations of Gj . Fujita showed
how to calculate the subduction pattern generated during the process of the
restriction by Gj by using a table of marks [1,2]. Thereby, he formulated the sub-
duction pattern as follows:

G(/Gi) ↓ Gj = βjkGj (/Gk) + βj�Gj (/G�) + · · · , (8)

where Gi , Gj , Gk, and G� are all subgroups of G, while Gk, G�, . . . are sub-
groups of the (subducing) subgroup Gj . According to equation (8), monomial
expressions called unit subduced cycle indices (USCIs) are obtained as general
formulas [1,2]:

s
βjk

djk
s
βj�

dj�
· · · , (9)

where we place djk = |Gj |/|Gk|, dj� = |Gj |/|G�|, and so on and select the super-
scripts from the multiplicity factors βjk, βjk, etc. in equation (8). Naturally, when
Gi is equal to C1 = {I } in equation (6), the regular representation G(/C1) results.
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For the purpose of applying such CRs and their subductions to combi-
natorial enumeration, we should take account of two aspects. First, CRs and
their subduction control orbits (equivalence classes) of ligands or vertices in
a molecule or graph [4–6]. Second, they also control orbits (equivalence clas-
ses) of isomeric molecules or graphs (configurations) [1,2]. Understanding the
relationship between the two aspects is essential to gain a deeper insight to
combinatorial enumeration (cf. chapter 15 of [1]). Although a few graphi-
cal studies have recently appeared with respect to the two aspects of CRs
[7,8], there have been no graphical studies on the two aspects for the con-
cept of subduction to the best of our knowledge. In fact, one recent study for
modeling subduction of CRs has stressed the latter aspect, where it has used
Cayley graphs in its formulation [9]. Hence, it is desirable to develop a graph-
ical or non-mathematical approach which is capable of giving a balanced per-
spective on the two aspects. Moreover, because the Cayley graphs are still a
rather mathematical tool which is not familiar to experimental chemists, a more
direct way of modeling would be desirable to clarify both the two aspects
underlying the concepts of subduction of CRs and USCIs. In summary, it is
the main objective of this work to model the concepts of subduction of CRs
and USCIs by developing double coloring of graphs as a new concept, which
can provide experimental chemists with a concrete image of the abstract con-
cepts. In addition, the double coloring is applied to the modeling of double
cosets.

2. Regular bodies as parent graphs

To model CRs of a group G, we start from a regular body as a parent
graph, which contains |G| equivalent vertices (substituted by an appropriate lig-
and, i.e., �) [4]. The set of |G| positions construct an orbit (equivalence class),
which is controlled by the regular representation G(/C1) of degree |G|. Since the
regular body itself stays fixed under the action of all of the elements of G, it can
be considered to be a single uncolored graph as a homomer. In other words, the
homomer set contains only one homomer, which is represented by the symbol,
H[G(/G)] = {h}.

Figure 1 illustrates several regular bodies which we use as parent graphs in
this paper. As a parent graph of D2d-symmetry, we use an allene derivative (1),
the derivation of which has been discussed previously [6]. For the sake of conve-
nience, we adopt a top view (2) through the C2-axis. As a parent graph of C2v-
symmetry, we use a cyclopropane segment (3) selected from the allene derivative
(1). We adopt a top view (4) also for this parent graph. To differentiate between
parent graphs of Cs- and C2-symmetry, we adopt 5 and 6 with perpendicular
arrow symbols.
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Figure 1. Several regular bodies as parent graphs.

3. Homomer sets controlled by CRs

According to lemma 7.1 of [1] and lemma 2 of [4], we can select sets of |Gi |
vertices from the |G|, where each of the selected sets belongs to the Gi-symmetry.
The number of such sets is equal to |G|/|Gi |, which is given by equation (7.3) of
[1]:

G(/C1) ↓ Gi = |G|
|Gi |Gi(/C1). (10)

This equation indicates that the vertices of such an appropriate set are colored
in black so as to give a colored graph of Gi . This derivation has once been dis-
cussed in detail in terms of subductive and inductive derivation [6]. The resulting
colored graph, h1, is operated upon by the elements of G to generate the full set
of (symmetry equivalent) graphs, which is called homomer set represented by the
symbol H[G(/Gi)] = {h1, h2, . . . , hr}, where r = |G|/|Gi |. In place of the use of
all the elements, we can use the representatives of the cosets, i.e., {g1, g2, . . . , gr},
which appear in equation (4). The homomers in H[G(/Gi)] are controlled by the
coset representation G(/Gi) (equation (6)), because they correspond to the cosets
represented by equation (4). This has been generally proved previously (theorem
15.2 of [1]). It should be noted that the present term “homomer” designates both
homomers and enantiomers from the stereochemical point of view.
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Let us consider an allene skeleton of the D2d-symmetry (2) as a parent
graph. The D2d-group contains the following elements:

D2d = {I, C2(3), C2(1), C2(2), σd(1), σd(2), S4, S
3
4}, (11)

where the element C2(3) is selected as the two-fold axis along with the C=C=C
axis of allene.

Let us examine Gi = Cs = {I, σd(1)}, which is one of the eight subgroups
of D2d (up to conjugacy). Then, the cosets of this case are obtained as follows
according to equation (4):

1 : Cs = CsI = {I, σd(1)},
2 : CsC2(3) = {C2(3), σd(2)},
3 : CsC2(1) = {C2(1), S4},
4 : CsC2(2) = {C2(2), S

3
4}

(12)

from which we select the representatives to give the following transversal:

TD2d/C1
= {I, C2(3), C2(1), C2(2)}. (13)

According to equation (10), we have the following equation:

D2d(/C1) ↓ Cs = |D2d |
|Cs | Cs(/C1) = 4Cs(/C1), (14)

which produces a partition of vertices (1 2)(3 8)(4 7)(5 6) in 2 shown in
figure 1. By coloring the first set of vertices (1 2) in black, we obtain the
graph 7 (h1 shown in figure 2), which belongs to the Cs-symmetry according to
equation (14).

By applying the element σd(1) of C2I (= Cs) to the first graph 7 (h1), we can
obtain the identical graph (7′), although the numbering of the vertices is altered.
Thus, coset 1 (C2I ) shown in equation (12) corresponds to the set of 7 and 7′,
which is represented by h1 as a generator graph. According to the cosets listed
in equation (12), the elements of coset 2 (CsC2(3)) generate the set of 8 and 8′,
which is a homomer represented by h2; the elements of coset 3 (CsC2(1)) gener-
ate the set of 9 and 9′ (h3); and the elements of coset 4 (CsC2(2)) generate the set
of 10 and 10′ (h4). Thereby, we can obtain a homomer set H[D2d(/Cs)] by col-
lecting the four homomers to give H[D2d(/Cs)] = {h1, h2, h3, h4}. Note that the
homomer set can also be obtained by operating the transversal (equation (13))
on h1. It follows that the set H[D2d(/Cs)] exhibits the one-to-one correspondence
represented by h1 → 1, h2 → 2, h3 → 3, and h4 → 4, where the cosets at issue
are numbered as shown in equation (12). As a result, the set H[D2d(/Cs)] is con-
trolled by the coset representation D2d(/Cs).
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Figure 2. Four homomers which model D2d(/Cs ), i.e., H[D2d(/Cs )] = {h1, h2, h3, h4}.

Let us next examine Gi = C2 = {I, C2(3)}, which is one of the eight sub-
groups of D2d (up to conjugacy). Then, the cosets of this case are obtained as
follows according to equation (4):

1 : C2 = C2I = {I, C2(3)},
2 : C2σd(1) = {σd(1), σd(2)},
3 : C2S4 = {S4, S

3
4},

4 : C2C2(1) = {C2(1), C2(2)}.
(15)

According to equation (10), we have the following equation:

D2d(/C1) ↓ C2 = |D2d |
|C2| C2(/C1) = 4C2(/C1), (16)

which produces a partition of vertices (1 5)(2 6)(3 7)(4 8) in the regular body
(2) shown in figure 1. Hence, by coloring the two vertices (1 5) in black, we can
obtain a colored graph h1 of C2-symmetry, as shown in figure 3. By applying
the representative σd(1) of the coset C2σd(1) (equation (15)) to the first homomer
h1, we can obtain the second homomer h2. On the same line, the applications
of S4 (∈ C2S4) and C2(1) (∈ C2C2(1)) yield homomers h3 and h4, respectively. As
a result, it can be shown that the set H[D2d(/C2)] exhibits the one-to-one corre-
spondence represented by h1 → 1, h2 → 2, h3 → 3, and h4 → 4, where the cosets
at issue are numbered as shown in equation (15). As a result, the set H[D2d(/C2)]
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Figure 3. Four homomers which model D2d(/C2), i.e., H[D2d(/C2)] = {h1, h2, h3, h4}.

is controlled by the coset representation D2d(/C2). Strictly speaking, the pair of
h1 and h2 or the pair of h3 and h4 exhibits an enantiomeric pair from the stere-
ochemical point of view. For the sake of simplicity, however, the four graphs of
the two pairs are referred to as homomers in this paper.

4. Double coloring for modeling of subductions of CRs

4.1. Doubly-colored graphs

4.1.1. Doubly-colored parent graphs
To discuss a direct model of G(/Gi) ↓ Gj , we first consider a special case

of G(/G) ↓ Gj . The corresponding homomer set H[G(/G)] contains only one
(uncolored) graph (the parent graph). Since we can easily find the following sub-
duction as a rather trivial case:

G(/G) ↓ Gj = Gj (/Gj ), (17)

we obtain a homomer set H[Gj (/Gj )] which contains one (uncolored) graph.
This rather trivial case corresponds to the double coloring of vertices, which is
a kind of coloring (additive coloring by large circle/none) other than the vertex
coloring (single coloring by black/white) described in the preceding paragraphs.

For example, the graph 15 shown in figure 4 illustrates a direct model for
the subduction D2d(/D2d) ↓ C2v = C2v(/C2v), where the vertices 1, 2, 5, and 6
of 2 are colored by (substituted) by large circles superimposed onto small open
circles. Thereby, the resulting graph (15) belongs to C2v-symmetry, where the set
of the equivalent vertices 1, 2, 5, and 6 is differentiated from the set of vertices
3, 4, 7, and 8. We call this type of colored graph doubly-colored graphs for the
sake of convenience. The two sets of vertices are controlled by the subduction
represented by

D2d(/C1) ↓ C2v = 2C2v(/C1), (18)
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Figure 4. Direct modeling of a group subduction represented by D2d(/D2d) ↓ C2v = C2v(/C2v).

which is a concrete case of equation (10). Each of the two sets corresponds to
a homomer set Ĥ[C2v(/C2v)], where the symbol with a hat is used to designated
such a homomer as containing doubly-colored graphs. Its correspondence to the
parent graph 4 for H[C2v(/C2v)] shown in figure 1 can be easily understood by
inspection.

If chemical meanings are required, the double coloring can be considered to
be the introduction of the corresponding isotopes. Thus, let the symbols � and
� represent a hydrogen atom and a chlorine atom. Then, their double colored

forms ��and ��represent a deuterium atom (2H) and 37Cl respectively.
If other chemical meanings are required, we can consider the graph 16

for modeling D2d(/D2d) ↓ C2v = C2v(/C2v), where both of the two carbons of a
cyclopropane are substituted (colored) by solid circles ( �, e.g., 13C) to restrict
the symmetry of the parent graph into C2v. Thereby, the set of vertices 1, 2, 5,
and 6 in 16 is differentiated from the set of vertices 3, 4, 7, and 8. During this
process, the four equivalent carbons in 2, which are governed by D2d(/Cs), are
divided into two sets according to the following subduction:

D2d(/Cs) ↓ C2v = C2v(/Cs) + C2v(/C′
s), (19)

which has once been discussed in detail in chapter 9 of [1].

4.1.2. Vertices of Doubly-Colored Parent Graphs
Let us consider a regular body as a parent graph for modeling the group G,

where its |G| vertices correspond to the elements of G. This means that, when G
is regarded as an ordered set, the vertices of the regular body can be numbered
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sequentially according to the order of (1), i.e., 1, 2, . . . , |G|. This nature is char-
acterized by the statement that the vertices of the regular body are governed by
the coset representation G(/C1) (the regular representation in this case). Such
modes of numbering are presented in |G|! ways, where any one of them can be
selected as a reference or a starting mode of numbering. This correspondence
has been generally discussed in detail in a previous paper [5].

Let us next consider the cosets of the group Gj :

G/Gj =
{

Gjg
′
1, Gjg

′
2, . . . , Gjg

′
|G|/|Gj |

}
. (20)

Each coset Gjg (g ∈ {g′
1, g

′
1, . . . , g

′
|G|/|Gj |

}) appearing in equation (20) can be

regarded as an ordered set in which the order of its elements is the same as that
of the elements of the group Gj :

Gj = {g(j)

1 , g
(j)

2 , . . . , g
(j)

|Gj |
},

Gjg = {g(j)

1 g, g
(j)

2 g, . . . , g
(j)

|Gj |
g}. (21)

This means that the elements of each coset can be numbered sequentially accord-
ing to the order of equation (21), i.e., 1′, 2′, . . . , |Gj |′. Such modes of numbering
are presented in |Gj |! ways, where any one of them can be selected as a reference
or a starting mode of numbering. Note that the numbering based on equation
(21) can be selected in this way to correspond to the one based on equation (1).

Keeping this correspondence (equation (21)) in mind, all of the elements
of G are operated on the numbered regular body as a starting graph. When
g (∈ Gjg) is operated on the numbered regular body, we adopt the changed
numbering based on the changed order of equation (1) as well as the changed
numbering based on the changed order of equation (21). The former numbering
corresponds to G(/G) (and G(/C1) for its vertices) and the latter numbering cor-
responds to Gj (/Gj ) (and Gj (/C1) for its vertices), as shown in equation (17).

For example, the vertices of the regular body 2 of D2d can be numbered
according to the order:

{I σd(1) S4 C2(1) C2(3) σd(2) S3
4 C2(2)}

1 2 3 4 5 6 7 8
(22)

to give the numbering shown in figure 4.
According to the coset decomposition D2d = C2v + C2vS4, we obtain the

numbering shown in 15:

{I σd(1) C2(3) σd(2) S4 C2(1) S3
4 C2(2)}

1 2 5 6 3 4 7 8
1′ 2′ 3′ 4′ 1′ 2′ 3′ 4′

. (23)

We select 15 as a starting graph, which is permutated on the action of all
of the elements of D2d . The resulting eight modes of numbering are listed in
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figure 5, where we adopt the numbering according to equation (22) and the num-
bering according to equation (23). The resulting set of 15, 17, 20, and 21, which
are identical to each other, indicates a graph of C2v-symmetry. The set is char-
acterized by the CR, C2v(/C2v). The other set of 18, 19, 22, and 23 are identi-
cal to give a graph of C2v-symmetry. The set is also characterized by the CR,
C2v(/C2v).

Note that the former set (15, 17, 20, and 21) is based on the numbering
according to the coset C2vI (equation (23)), while the latter set (18, 19, 22, and
23) is based on the numbering according to the coset C2vS4 (equation (23)).

By the inspection of figure 5, we can understand that the subduction by C2v

(i.e., D2d(/D2d) ↓ C2v for a parent graph and D2d(/C1) ↓ C2v for its vertices) is
regarded as the restriction of numbering from D2d to C2v in terms of the corre-
sponding cosets of D2d/C2v as ordered sets. Obviously, this holds true for general
cases.

Figure 5. Eight graphs for modeling D2d(/D2d) and two sets of four graphs for modeling C2v(/C2v).
This means that H[D2d(/D2d)] = {h} and Ĥ[C2v(/C2v)] = {h1} or {h2}.
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4.2. Double coloring of homomer sets

To model the subduction G(/Gi) ↓ Gj , we define double coloring in which
we combine the homomer set H[G(/Gi)] of the vertex coloring and the homomer
set of the additive coloring Ĥ[Gj (/Gj )]. For example, we combine H[D2d(/Cs)]
(figure 2) with Ĥ[C2v(/C2v)] (figure 5) in order to model the subduction
D2d(/Ds) ↓ C2v, Thereby, we obtain doubly-colored graphs collected in figure 6.
The set of graphs (24 and 28) is fixed under the action of Cs ; and the set of
graphs (25 and 29) is fixed under the action of Cs . This means that these two
sets satisfies Ĥ[C2v(/Cs)] = {ĥ1, ĥ2}. On the other hand, the set of graphs (26
and 30) is fixed under the action of C′

s ; and the set of graphs (27 and 31) is
fixed under the action of C′

s . This means that these two sets satisfies Ĥ[C2v(/Cs)]
= {ĥ′

1, ĥ
′
2}.

The reasoning of the double coloring process for obtaining Ĥ[C2v(/Cs)] and
Ĥ[C2v(/C′

s)] (figure 6) from H[D2d(/Cs)] (figure 2) and Ĥ[C2v(/C2v)] (figure 5) is
complicated, as explained above. It is, however, easy to apply the double coloring

Figure 6. Double coloring for modeling D2d(/Ds ) ↓ C2v . This means that H[C2v(/Cs )] = {ĥ1, ĥ2}
and Ĥ[C2v(/C′

s )] = {ĥ′
1, ĥ

′
2}.
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to actual cases, as summarized to give figure 7, where the top row of figure 2
and the top row of figure 6 are selected to give the top and middle rows of
figure 7. The bottom row (the set of 32 and 33 and the set of 34 and 35) is
obtained by starting from the parent graph (4) for C2v(/C2v) in order to model
C2v(/Cs) + C2v(/C′

s). The relationship between the middle row and the bottom
row is obvious by inspection.

Figure 8 shows the conceptually same process as that of figure 7 by using
an alternative additive coloring based on 16 shown in figure 4. This example may
be more chemical as compared with the double coloring shown in figure 7.

Let us next model the subduction D2d(/Cs) ↓ Cs . The resulting doubly-col-
ored graphs are shown in the middle row of figure 9. Each of the doubly-colored
graphs 40 and 41 is contained in a respective homomer set Ĥ[Cs(/Cs)]. The set
of 42 and 43 is contained in the homomer set Ĥ[Cs(/C1)], where 42 and 43 are
enantiomeric. The bottom row (the one-membered set of 44, the one-membered
set of 45, and the two-membered set of 46 and 47) is obtained by starting from
the parent graph (5) for Cs(/Cs) in order to model 2Cs(/Cs) + Cs(/C1). The
relationship between the middle row and the bottom row is obvious by inspec-
tion.

Doubly-colored graphs for modeling the subduction D2d(/Cs) ↓ C2 are col-
lected in the middle row of figure 10. The set of homomers (48 and 49)
and the other set of homomers (50 and 51) respectively construct homo-
mer sets representing Ĥ[C2(/C1)]. The bottom row (the two-membered set of
52 and 53, and the two-membered set of 54 and 55) is obtained by start-
ing from the parent graph (6) for C2(/C2) in order to model 2C2(/C1).
The relationship between the middle row and the bottom row is obvious by
inspection.

Let us now consider the homomer set (11, 12, 13, and 14) listed in figure 3.
Doubly-colored graphs for modeling the subduction D2d(/C2) ↓ C2v are collected
in the middle row of figure 11. The set of homomers (56 and 57) and the other
set of homomers (58 and 59) respectively construct homomer sets representing
Ĥ[C2v(/C2)]. In the present case, each set contains enantiomers. The bottom row
(the two-membered set of 60 and 61 and the two-membered set of 62 and 63) is
obtained by starting from the parent graph (4) for C2v(/C2v) in order to model
2C2v(/C2). The relationship between the middle row and the bottom row is obvi-
ous by inspection.

5. Double coloring for modeling double cosets

We have discussed the relationship between subduction of coset representa-
tions and double cosets [10]. When the group G is decomposed into the follow-
ing double coset decomposition:
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Figure 7. Double Coloring for modeling a group subduction represented by D2d(/Cs ) ↓ C2v

= C2v(/Cs ) + C2v(/C′
s ).

G = Gig
′
1Gj + Gig

′
2Gj + · · · Gig

′
r ′Gj , (24)

where the transversal is placed as follows:

ϒ = {g′
1, g

′
2, . . . , g

′
r ′ }. (25)
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Figure 8. Double coloring for modeling a group subduction represented by D2d(/Cs ) ↓ C2v

= C2v(/Cs ) + C2v(/C′
s ).

Then, Theorem 2 of [10] teaches us as follows:

G(/Gi) ↓ Gj =
∑
g∈ϒ

Gj (/g
−1Gig ∩ Gj ). (26)
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Figure 9. Double Coloring for modeling a group subduction represented by D2d(/Cs ) ↓ Cs

= 2Cs (/Cs ) + Cs (/C1).

Note that g−1Gig which is conjugate to Gi is the stabilizer of the coset Gig. The
integer |Gj |/|g−1Gig∩Gj | derived from the right-hand side of equation (26) rep-
resents the number of cosets in the double coset GigGj (g ∈ ϒ). This means that
several cosets Gig are fused under the action of Gj into a double coset to sat-
isfy equation (26). This process of fusion can be modeled by the double coloring
process developed in the preceding section.

From the cosets listed in equation (12), we obtain the following double
coset decomposition:

D2d = CsIC2v + CsC2(1)C2v, (27)



226 S. Fujita and S. El-Basil / Doubly-colored graphs as graphical models

Figure 10. Double Coloring for modeling a group subduction represented by D2d(/Cs ) ↓ C2

= 2C2(/C1).

where the transversal is obtained to be {I, C2(1)}. The first double coset CsIC2v

(=C2v) contains the cosets Cs and CsC2(3); and the second double coset
CsC2(1)C2v contains the cosets CsC2(1) and CsC2(2).

This process is rationalized also by figure 6, which is used to model the sub-
duction represented by D2d(/Cs) ↓ C2v = C2v(/Cs) + C2v(/C′

s). The set of 24 and
28 (for CsI ) and the set of 25 and 29 (for CsC(3)) are fused under the action
of C2v so as to produce a combined set which is regarded as the first double
coset of equation (27). This process correspond to C2v(/Cs), since the construc-
tion of the homomer set Ĥ[C2v(/Cs)] equalizes the homomers (figure 6). Note
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Figure 11. Direct modeling of a group subduction represented by D2d(/C2) ↓ C2v = 2C2v(/C2).

that I−1CsI ∩ C2v = Cs , which appears as the local symmetry of the coset rep-
resentation C2v(/Cs) in agreement with equation (26). On the other hand, the
set of 26 and 30 (for CsC2(1)) and the set of 27 and 31 (for CsC(2)) are fused
under the action of C2v, producing a combined set which is regarded as the sec-
ond double coset of equation (27). This process correspond to C2v(/C′

s). Note
that C−1

2(1)CsC2(1) ∩ C2v = C′
s ∩ C2v = C′

s , which appears as the local symmetry of
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the coset representation C2v(/C′
s) in agreement with equation (26). Keeping this

discussion in mind, figure 7 is found to illustrate the modeling the same double
coset decomposition.

Let us then consider figure 9, which models the subduction represented by
D2d(/Cs) ↓ Cs = 2Cs(/Cs) + Cs(/C1). From the cosets listed in equation (12),
we obtain the following double coset decomposition:

D2d = CsICs + CsC2(3)Cs + CsC2(1)Cs, (28)

where the transversal is obtained to be {I, C2(3), C2(1)}. The first double coset
CsICs (= Cs) contains the coset Cs ; the second double coset CsC2(3)Cs con-
tains the cosets CsC2(3); and the third double coset CsC2(1)Cs contains the cosets
CsC2(1) and CsC2(2).

The homomer set Ĥ[Cs(/Cs)] (containing 40) corresponds to the dou-
ble coset CsICs appearing at equation (28). Note that I−1CsI ∩ Cs = Cs ,
which appears as the local symmetry of the coset representation C2v(/Cs)

in agreement with equation (26). The homomer set Ĥ[Cs(/Cs)] for 41 corre-
sponds to the double coset CsC2(3)Cs appearing at the equation (28). Note
that C−1

2(3)CsC2(3) ∩ Cs = Cs , which appears as the local symmetry of the coset
representation C2v(/Cs) in agreement with equation (26). The homomer set
Ĥ[Cs(/C1)] for 42 and 43 corresponds to the double coset CsC2(1)Cs appear-
ing at the equation (28). Note that C−1

2(1)CsC2(1) ∩ Cs = C′
s ∩ Cs = C1, which

appears as the local symmetry of the coset representation Cs(/C1) in agreement
with equation (26). It follows that Fig. 9 models the double coset decomposition
represented by equation (28).

6. Modeling of USCIs

The method of double coloring described above yields G(/Gi) ↓ Gj as a
sum of coset representations of the subgroup Gj (equation (8)). Hence, the cor-
responding USCIs can be easily obtained.

For example, figure 7 models D2d(/Cs) ↓ C2v = C2v(/Cs)+C2v(/C′
s) so as to

give the corresponding USCI s2
2 . Thus, figure 7 shows that the number of homo-

mers in Ĥ[C2v(/Cs)] is equal to 2 (also algebraically |C2v|/|Cs | = 4/2 = 2) so as
to give a dummy variable s2 and that the number of homomers in Ĥ[C2v(/C′

s)]
is equal to 2 (also algebraically |C2v|/|C′

s | = 4/2 = 2) so as to give a dummy
variable s2.

Figure 7 models D2d(/Cs) ↓ Cs = 2Cs(/Cs) + Cs(/C1) so as to give the
corresponding USCI s2

1s2. Graphically, figure 7 shows that the numbers of hom-
omers in Ĥ[Cs(/Cs)] and in Ĥ[Cs(/C1)] are respectively equal to 1 (algebraically
|Cs |/|Cs | = 1) and 2 (algebraically |Cs |/|C1| = 2) so as to give a dummy variable
s1 and s2. Since there are two Ĥ[Cs(/Cs)], we can find USCI to be s2

1s2.
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Similarly, figure 10 models D2d(/Cs) ↓ C2 = 2C2(/C1) so as to give
the corresponding USCI s2

2 by inspection. Figure 11 models D2d(/C2) ↓ C2v

= 2C2v(/C2) so as to give the corresponding USCI s2
2 by inspection.

7. Conclusion

The concept of doubly-colored graphs is proposed for modeling such
abstract concepts as subductions of coset representations, double cosets, and unit
subduced cycle indices (USCIs). Thereby, their fruitful contents are visualized so
as to be understandable graphically.
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